HFO-1234yf
A Low GWP Refrigerant For MAC
Honeywell / DuPont Joint Collaboration

Mark Spatz
Honeywell

Barbara Minor
DuPont

SAE World Congress – Detroit, Michigan
April 14-17, 2008
• DuPont And Honeywell Have Identified HFO-1234yf (CF₃CF=CH₂) As The Preferred Low GWP Refrigerant Which Offers The Best Balance Of Properties And Performance

• Other Industry Options Have Certain Limitations
 – CO₂: complexity, energy efficiency and requires mitigation
 – 152a / secondary loop: performance, size and weight

Honeywell and DuPont are focused on HFO-1234yf
• **Excellent environmental properties**
 – Very low GWP of 4, Zero ODP, Favorable LCCP
 – Atmospheric chemistry determined and published

• **Low toxicity, similar to R-134a**
 – Low acute and chronic toxicity
 – Significant testing completed

• **System performance very similar to R-134a**
 – Excellent COP and Capacity, no glide
 • From both internal tests and OEM tests
 – Thermally stable and compatible with R-134a components
 – Potential for direct substitution of R-134a

• **Mild flammability (manageable)**
 – Flammability properties significantly better than 152a; (MIE, burning velocity, etc)
 – Potential for “A2L” ISO 817 classification versus “A2” for 152a based on AIST data
 – Potential to use in a direct expansion A/C system - better performance, lower weight, smaller size than a secondary loop system
Excellent Environmental Properties

- ODP = 0
- 100 Year GWP = 4 \((\text{GWP}_{134a} = 1300) \)
 - Atmospheric lifetime = 11 days
 - Atmospheric chemistry measured
 - Atmospheric breakdown products are the same as for 134a
 - No high GWP breakdown products (e.g. NO HFC-23 breakdown product)
 - Results published in 2008
- Good LCCP
Significant Toxicity Information Available

<table>
<thead>
<tr>
<th>Test</th>
<th>HFO-1234yf</th>
<th>134a</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acute Lethality</td>
<td>No deaths 400,000 ppm</td>
<td>No deaths 359,700 ppm</td>
</tr>
<tr>
<td>• Cardiac sensitization</td>
<td>NOEL > 120,000 ppm</td>
<td>NOEL 50,000 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOEL 75,000 ppm</td>
</tr>
<tr>
<td>• 13 week inhalation</td>
<td>NOEL 50,000 ppm</td>
<td>NOEL 50,000 ppm</td>
</tr>
<tr>
<td>• Developmental (Rat)</td>
<td>NOAEL 50,000 ppm</td>
<td>NOAEL 50,000 ppm</td>
</tr>
<tr>
<td>• Genetic Toxicity</td>
<td>Not Mutagenic</td>
<td>Not Mutagenic</td>
</tr>
<tr>
<td>• 13 week genomic (carcinogenicity)</td>
<td>Not active (50,000 ppm)</td>
<td>Baseline (50,000 ppm)</td>
</tr>
<tr>
<td>• Environmental Tox</td>
<td>NOEL > 100 mg/L (Pass)</td>
<td>NOEL > 100 mg/L (Pass)</td>
</tr>
</tbody>
</table>

HFO-1234yf Has Low Toxicity
ATEL Calculation

- ATEL (Acute Toxicity Exposure Limit) is a value used by standards organizations (e.g. ASHRAE 34) to reduce the risks of acute toxicity hazards in normally occupied spaces.
- It is calculated from the acute toxicity data for a given refrigerant and provides an estimate of the maximum exposure limit for a short time period (e.g. 30 minutes)

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>ATEL (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>18,000</td>
</tr>
<tr>
<td>R-134a</td>
<td>50,000</td>
</tr>
<tr>
<td>R-152a</td>
<td>50,000</td>
</tr>
<tr>
<td>CO₂</td>
<td>40,000</td>
</tr>
<tr>
<td>HFO-1234yf</td>
<td>101,000</td>
</tr>
</tbody>
</table>

HFO-1234yf Has a Favorable ATEL Value
• No changes were made to system including TXV; Industry standard test conditions
• Both Capacity and COP are generally within 5% of 134a performance.
 – This was recently confirmed at two outside labs.
• Lower compression ratio, low discharge temperature
 (12°C lower at peak conditions)
• Further improvements likely with minor system optimization, for example:
 – Lower ΔP suction line and / or TXV optimization to maintain a more optimum superheat.

HFO-1234yf performance is comparable to 134a; further improvement possible with minor optimization
Preliminary LCCP Analysis

GM Model Using Bench Test Performance Results
Relative to R-134a

Average 15% Better LCCP Values; Up to 27% in Europe
JAMA and FIAT Obtained Similar Results
Summary

- Low Charge, High Pressure, Heated Compressor Environment, 2000 RPM, 400 hour test
- No change detected in either refrigerant or lubricant chemistry
 - Initial and final oil sample TAN < 0.1
 - Refrigerant purity remained at 99.8% with no change in trace impurities.
- Wear is same as in a 134a system
- Polishing is seen on the Front and Rear Shaft Bearings & Rear Thrust Bearing
- Swash-plate polymer coating is intact and shows only minor wear
- Results confirmed in compressor tests by Sanden

Compressor Wear Same as 134a
Results
HFO-1234yf shows lower permeability values toward Veneer hoses compared to R134a.

Remarks
With the same gas concentration (0.6g/cm³) the inner pressure with HFO-1234yf is lower (e.g: at 90°C was -20%)
Refrigerant Flammability Tests

• Is it flammable? If yes, Flame Limits will exist.
 – LFL – lower flammability limit
 – UFL – upper flammability limit

• What is the probability of an ignition source being present of sufficient energy to cause an ignition?
 – Autoignition temperature
 – Minimum ignition energy (MIE)

• What is the impact (damage potential) if an ignition occurs?
 – Heat of combustion
 – Burning velocity
HFO-1234yf Flame Limits

LFL Values
- Ammonia 15 vol.%
- HFC-32 13.3 vol.%
- HFO-1234yf 6.5 vol.%
- Methane 4.6 vol.%
- HFC-152a 3.9 vol.%
- Ethylene Oxide 3.0 vol.%
- Acetylene 2.5 vol.%
- Propane 2.1 vol.%
- Gasoline 1.6 vol.%

- HFO-1234yf flame limits measured using ASTM E681-04 T= 21°C : 6.5 vol.% to 12.3 vol.%
- Low LFL value → more flammable
- Wider UFL – LFL → more flammable

ASTM E681 Apparatus
- Air In
- Refrigerant In
- Spark Ignition
- Stirrer

- ASTM E-681 in US
 - 2004 version cited by ASHRAE (12 liter flask, spark ignition)
 - Flame must reach the wall and exhibit > 90 degree angle
 - 1985 version cited by SAE (5 liter flask, match ignition)

- A11 in EU
 - 5 cm x 30 cm Vertical tube
 - Spark ignition
 - Flame travels up the tube

HFO-1234yf Is Less Flammable Than 152a
Burning Velocity Measurements

- Measurements performed in 3 liter spherical apparatus
- Experimental result for HFO-1234yf: 1.5 cm s⁻¹
- ISO 817 Flammability Classification is 2L (lowest flammable class classification)
Minimum Ignition Energy

- 12-liter glass sphere used in ASTM E681 flammability limit tests was modified for MIE testing in order to eliminate potential wall quenching effects seen in standard 1 liter vessel

- Materials Tested:
 - HFC-32 from 16-22% (v/v) in 1% increments at 30 and 100 mJ nominal
 - HFO-1234yf from 7.5-11% (v/v) in 0.5% increments up to 1000 mJ nominal
 - Ammonia at 22% (v/v) at 100 and 300 mJ nominal

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>No Ignition Occurred</th>
<th>Ignition Occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFC-32</td>
<td>30 +/- 12 mJ</td>
<td>100 +/- 30 mJ</td>
</tr>
<tr>
<td>Ammonia¹</td>
<td>100 +/- 30 mJ</td>
<td>300 +/- 100 mJ</td>
</tr>
<tr>
<td>HFO-1234yf</td>
<td>5,000 +/- 350 mJ</td>
<td>10,000 +/- 350 mJ</td>
</tr>
</tbody>
</table>

HFO-1234yf Is Very Difficult To Ignite With Electrical Spark
HFO-1234yf Mild Flammability Properties

Flammability Properties

<table>
<thead>
<tr>
<th></th>
<th>LFL<sup>a</sup> (vol%)</th>
<th>UFL<sup>a</sup> (vol%)</th>
<th>(\Delta) (vol%)</th>
<th>MIE (mJ)</th>
<th>BV<sup>c</sup> (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>2.2</td>
<td>10.0</td>
<td>7.8</td>
<td>0.25</td>
<td>46</td>
</tr>
<tr>
<td>R152a</td>
<td>3.9</td>
<td>16.9</td>
<td>13.0</td>
<td>0.38</td>
<td>23</td>
</tr>
<tr>
<td>R32</td>
<td>14.4</td>
<td>29.3</td>
<td>14.9</td>
<td>30-100<sup>b</sup></td>
<td>6.7</td>
</tr>
<tr>
<td>Ammonia</td>
<td>15</td>
<td>28</td>
<td>13</td>
<td>100-300<sup>b</sup></td>
<td>7.2</td>
</tr>
<tr>
<td>HFO-1234yf</td>
<td>6.5</td>
<td>12.3</td>
<td>5.8</td>
<td>>1,000<sup>b</sup></td>
<td>1.5</td>
</tr>
</tbody>
</table>

^aFlame limits measured at 21 C, ASTM 681-01

^bTests conducted in 12 litre flask to minimize wall quenching effects

^cBurning Velocity ISO 817 (HFO-1234yf BV measured by AIST, Japan)

Flammability Index

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>F</th>
<th>RF</th>
<th>RF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFO-1234yf</td>
<td>0.97</td>
<td>0.27</td>
<td>3.6</td>
<td>0.6</td>
</tr>
<tr>
<td>32</td>
<td>1.31</td>
<td>0.33</td>
<td>4.6</td>
<td>2.3</td>
</tr>
<tr>
<td>152a</td>
<td>1.78</td>
<td>0.5</td>
<td>16.6</td>
<td>17.9</td>
</tr>
<tr>
<td>Propane</td>
<td>1.99</td>
<td>0.55</td>
<td>56.7</td>
<td>37.2</td>
</tr>
</tbody>
</table>

\[
R = \frac{Cst}{LFL}
\]

\[
F = 1 - \sqrt[2]{\frac{LFL}{UFL}}
\]

\[
RF = \left[\frac{UFL}{LFL} - 1 \right] × \frac{Q}{M}
\]

\[
RF^2 = \left(\sqrt{UFL × LFL} - LFL \right) × Qst × Su × M
\]

\[Cst = \text{Stoichiometric composition in air, vol.\%}\]

\[Q = \text{Heat of Combustion per one mole}\]

\[Qst = \text{Heat of Combustion per one mole of the Stoichiometric mixture, kJ/mol}\]

\[Su = \text{Burning speed in Meters/Second}\]

\[M = \text{Molecular weight}\]
• The autoignition temperature of HFO-1234yf was determined at Chilworth Technology in UK.
 – Uniformly heated 500 ml glass flask, observed in dark for 10 mins.
 – Autoignition temperature for HFO-1234yf determined to be 405°C.

• Note that the air refrigerant mixture must be at this temperature for ignition to occur.

• Experiments were conducted to evaluate the ignition potential of hot surfaces (up to 800°C) to cause ignition.
 – 6 mm steel plate heated from behind with propane-oxygen torch
 – No ignition seen

• HFO-1234yf vapor sprayed onto the plate
• Infrared Thermometer measured temperature.
 • Three “dots” seen are to aim the thermometer
• Occasional red circles are diffraction rings from the camera lens reflecting the red plate through the refractive index gradient (caused by hot air / cold refrigerant).
Summary of Hot Plate Tests

<table>
<thead>
<tr>
<th></th>
<th>Hot Manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>550°C</td>
</tr>
<tr>
<td></td>
<td>Faint Red</td>
</tr>
<tr>
<td></td>
<td>800°C</td>
</tr>
<tr>
<td></td>
<td>Cherry Red</td>
</tr>
<tr>
<td></td>
<td>>900°C</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spray No oil</th>
<th>Premixed with air no oil</th>
<th>Premixed with air PAG oil</th>
<th>R-134a</th>
<th>Spray no oil</th>
<th>Premixed with air no oil</th>
<th>Premixed with air PAG oil</th>
<th>HFO-1234yf</th>
<th>Spray No oil</th>
<th>Premixed with air no oil</th>
<th>Premixed with air PAG oil</th>
<th>R-134a</th>
<th>Spray no oil</th>
<th>Premixed with air no oil</th>
<th>Premixed with air PAG oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No ignition</td>
<td>Not tested</td>
<td>No ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>Ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>No ignition</td>
<td>Ignition</td>
<td>No ignition</td>
<td>No ignition</td>
</tr>
<tr>
<td>HFO-1234yf</td>
<td></td>
</tr>
<tr>
<td>R-134a</td>
<td></td>
</tr>
</tbody>
</table>

HFO-1234yf shows same flammability behavior as R-134a - Ignition due to presence of oil
A potential ignition source for potentially flammable refrigerant/air leaks in passenger compartment of cars is a spark caused by a short circuit from a 12-V battery located under the seat.

The purpose of these tests is to determine whether such a spark is capable of igniting an ‘optimum’ concentration of HFC1234yf in air.

Follow procedures from ASTM E681 to prepare a well-blended refrigerant/air mixture of a known concentration in a sealed 12-l spherical flask; add moisture equivalent to 50% RH at 23°C.

Create a short-circuit in the mixture by discharging a high-capacity 12-V automotive battery (1020 cranking amps) across 9.5 mm diameter copper electrodes located in the sphere.

Perform tests for 8.13, 8.5, and 9.0% HFC-1234yf concentrations at 20°C, 60°C and 80°C; non-ignitions to be confirmed by nine (9) additional trials.
Battery Ignition Apparatus

12-l Sphere Containing 1234yf/Air

9.5 mm Stationary Copper Electrode

Moveable 9.5 mm Copper Electrode

Automotive Cables

High Current 12-V Switch

12-V/1020 CA Battery
Battery Ignition Results

- **No ignitions** observed at 8.13, 8.5, and 9.0% HFC-1234yf at either 20°, 60° or 80°C (10 trials per concentration)
- For comparison the ignitability of ammonia, a refrigerant of relatively low flammability, was tested at a 20% v/v concentration at 20°C and 60° C; positive test was obtained on the first trial
Passenger Compartment Evaluations

• As shown in the previous charts, the flammability parameters were conducted under very tightly controlled conditions.
 – Well mixed, uniform concentration of refrigerant and air.
 – Stagnant, not flowing environment.
 – Fixed conditions (e.g. temperature)

• In actual applications these conditions do not exist.

• Evaluations both experimental and with computer simulations were conducted to try to more closely approximate real world conditions.
• Good agreement between prediction and measurements.

• No increase in flame length from butane lighter.

• No flame from Electrical Arc.

<table>
<thead>
<tr>
<th></th>
<th>60 sec</th>
<th></th>
<th>360 sec</th>
<th></th>
<th>600 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFD</td>
<td>Test</td>
<td>CFD</td>
<td>Test</td>
<td>CFD</td>
</tr>
<tr>
<td>Vent</td>
<td>1.0</td>
<td>0.2</td>
<td>3.5</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Floor</td>
<td>1.5</td>
<td>1.4</td>
<td>4.1</td>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Butane Lighter</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Elec. Arc</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Extreme Leak Results: No Ignition with Arc Welder

- With simulated ruptured tube leak
 - No ignition with arc welder on floor (simulating battery ignition source)
 - No ignition with arc welder at vent outlet (simulating PTC heater ignition source)
Results of Mock-up Flammability Tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Description</th>
<th>Ignition Source</th>
<th>Time of Ignition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large Corrosion Leak (0.5 mm diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cigarette lighting at breath level</td>
<td>Butane lighter</td>
<td>After leak starts</td>
<td>No Ignition - only flame color change noted</td>
</tr>
<tr>
<td>2</td>
<td>Pooling Test- no blower operation</td>
<td>Arc welder on floor</td>
<td>Four minutes after end of leak</td>
<td>No Ignition</td>
</tr>
<tr>
<td>3</td>
<td>Cigarette Lighting at Vent Outlet</td>
<td>Butane lighter</td>
<td>After leak starts</td>
<td>No Ignition - only flame color change noted</td>
</tr>
<tr>
<td></td>
<td>Ruptured Tube Leaks (6.4 mm diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cigarette lighting at breath level</td>
<td>Butane lighter</td>
<td>After leak starts</td>
<td>Butane lighter failed to light.</td>
</tr>
<tr>
<td>5</td>
<td>Simulation of battery short</td>
<td>Arc welder on floor</td>
<td>After leak starts</td>
<td>No ignition</td>
</tr>
<tr>
<td>6</td>
<td>Simulation of PTC heater short</td>
<td>Arc welder at vent outlet</td>
<td>After leak starts</td>
<td>No ignition</td>
</tr>
<tr>
<td>7</td>
<td>Cigarette Lighting at Vent Outlet</td>
<td>Butane lighter</td>
<td>After leak starts</td>
<td>Butane lighter failed to light.</td>
</tr>
<tr>
<td>8</td>
<td>Cigarette lighting at breath level</td>
<td>Butane lighter</td>
<td>At start of leak for entire leak event</td>
<td>Minor flame extension</td>
</tr>
<tr>
<td>9</td>
<td>Cigarette Lighting at Vent Outlet Lighter held on for typ lighting time</td>
<td>Butane lighter</td>
<td>At start of leak for 5 secs</td>
<td>No flame extension</td>
</tr>
</tbody>
</table>
CFD Modeling & Flammability Testing Conclusions

• CFD Modeling
 – Good agreement for refrigerant concentration profiles between CFD and mock-up tests

• Mock-up test results
 – Ignition of HFO-1234yf did not occur, even with:
 • worst case leak representing evaporator rupture where LFL was exceeded
 • high energy ignition sources (butane lighter and arc welder)

• Results of hot surface tests at 800 C simulating engine compartment hot manifold showed no ignition.
 – Consistent with engine compartment test results from the CRP-1234 program

• No ignition occurred from 12V battery spark

• This is likely due to low burning velocity and high MIE of HFO-1234yf which makes it difficult to sustain and propagate a flame

HFO-1234yf Flammability Risk is Very Low
For most fires to happen, fuel and air at the right concentration, and an ignition source, with a sufficient energy level must co-exist at the same place and in the same time.

Several risk assessments have been completed or are in progress in US (SAE CRP-1234), Japan (JAMA) and Europe utilizing inputs of modeling and leak experiments.

- Release Experiments
 - Cabin and underhood
 - Normal operation and crash condition
 - Service (Professional and DIY)

- CFD modeling to visualize concentration distribution for various scenarios.
Table 26. Risks of Injury or Fatality from Various Events Compared to Risks Associated with Leaks of HFO-1234yf

<table>
<thead>
<tr>
<th>Risk</th>
<th>Risk per year</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of stroke</td>
<td>2.7×10^{-3}</td>
<td>Rhys Williams, 2001</td>
</tr>
<tr>
<td>Fatal accident in the home</td>
<td>1.1×10^{-4}</td>
<td>Wilson and Crouch, 1987</td>
</tr>
<tr>
<td>Fatal accident while climbing mountains (if mountaineer)</td>
<td>6×10^{-4}</td>
<td>Wilson and Crouch, 1987</td>
</tr>
<tr>
<td>Risk of being injured as a pedestrian</td>
<td>2.1×10^{-5}</td>
<td>NSC, 2004</td>
</tr>
<tr>
<td>Fatal injury at work (all occupations)</td>
<td>3.6×10^{-5}</td>
<td>NSC, 2004</td>
</tr>
<tr>
<td>Injury from lightning strike</td>
<td>1×10^{-6}</td>
<td>NWS, undated**</td>
</tr>
<tr>
<td>Risk of being fatally injured in an elevator ride</td>
<td>2×10^{-7}</td>
<td>McCann and Zalesky, 2006</td>
</tr>
<tr>
<td>Risk of exposure to HFO-1234yf above health based limits resulting from a collision</td>
<td>1×10^{-10}</td>
<td>CRP1234 Analysis</td>
</tr>
<tr>
<td>Risk of being injured by an HFO-1234yf ignition resulting from a collision</td>
<td>2×10^{-11}</td>
<td>CRP1234 Analysis (updated since VDA mtg.)</td>
</tr>
</tbody>
</table>

*Risk cited is 1 in 10,000 over the next century

Injury sufficiently serious to require hospital visit. Based on number of injuries per year divided by total U.S. adult population.

§ Total number of injuries requiring hospital visit per year divided by the total U.S. population.

** Total number of documented injuries from lightning strikes per year, divided by total U.S. population.

& FTA risk multiplied by the number of estimated drivers in the U.S.
Some Key SAE Standards Relevant to HFO-1234yf
Under Development

<table>
<thead>
<tr>
<th>Standard Title</th>
<th>Status</th>
<th>SAE Representative</th>
<th>Working Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Standards for Motor Vehicle Refrigerant Vapor Compression Systems</td>
<td>Revise J639 - separate different refrigerants into different sections - reviewed in Orlando and sent for ballot</td>
<td>Bill Hill</td>
<td>4</td>
</tr>
<tr>
<td>New Ref 152a - 1234yf Refrigerant Purity and Container Requirements Used in Mobile Air-Conditioning Systems</td>
<td>Revise J2776</td>
<td>Bill Hill</td>
<td>4</td>
</tr>
<tr>
<td>R1234yf Service Standards for Mobile Air Conditioning Systems</td>
<td>Revise J2770</td>
<td>Paul Weissler</td>
<td>5</td>
</tr>
<tr>
<td>New Ref 152a - 1234yf Refrigerant Recovery Equipment for Mobile Automotive Air Conditioning Systems [Superseding J1732]</td>
<td>Revise J2210</td>
<td>Gary Murray</td>
<td>1</td>
</tr>
<tr>
<td>New Ref 152a - 1234yf Refrigerant Minimum Performance Criteria for Electronic Leak Detectors</td>
<td>Revise J2791</td>
<td>Bill Williams</td>
<td>2</td>
</tr>
<tr>
<td>New Ref 152a - 1234yf Ultraviolet Leak Detection minimum requirements for Mobile Air-Conditioning Systems</td>
<td>Revise J2775 or J2297</td>
<td>Phil Trigiani</td>
<td>3</td>
</tr>
<tr>
<td>Recommended Service Procedure for the Containment of HFC-152a and HFO-1234yf</td>
<td>Revise J2211</td>
<td>Paul Weissler</td>
<td>5</td>
</tr>
</tbody>
</table>

- First drafts of new Standard Revisions targeted for discussion at SAE ICCC Meeting in April
- Safe Evaporator Standard under consideration.
Next Steps

• Support OEM property/performance testing
 – Vehicle cooling performance/optimization
 – Compatibility, stability and durability

• Complete toxicity testing
 – Rabbit Developmental exposures complete
 • analysis and final report by August ‘08
 – Reproductive (preliminary results by August ’08)

• Complete regulatory registrations (REACH, SNAP etc)

• Achieve industry consensus on HFO-1234yf as global industry solution by mid’08 and put plans in place to meet 2011 EU MAC Directive.
• Excellent environmental properties
 – Very low GWP of 4, Zero ODP, Favorable LCCP
 – Atmospheric chemistry determined and published
• Low toxicity, similar to R-134a
 – Low acute and chronic toxicity
 – Significant testing completed
• System performance very similar to R-134a
 – Excellent COP and Capacity, no glide
 • From both internal tests and OEM tests
 – Thermally stable and compatible with R-134a components
 – Potential for direct substitution of R-134a
• Mild flammability (manageable)
 – Flammability properties significantly better than 152a; (MIE, burning velocity, etc)
 – Potential for “A2L” ISO 817 classification versus “A2” for 152a based on AIST data
 – Potential to use in a direct expansion A/C system - better performance, lower weight, smaller size than a secondary loop system
DISCLAIMER
Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.